请教verilog中流水线的用途?
看到很多资料里说“利用流水线的设计方法,可大大提高系统的工作速度。”
这是一个教材里很常用的例程:
(1)非流水线实现方式
module adder_8bits(din_1, clk, cin, dout, din_2, cout);
input din_1;
input clk;
input cin;
output dout;
input din_2;
output cout;
reg dout;
reg cout;
always @(posedge clk) begin
{cout,dout} <= din_1 + din_2 + cin;
endendmodule
(2)2级流水线实现方式:
module adder_4bits_2steps(cin_a, cin_b, cin, clk, cout, sum);
input cin_a;
input cin_b;
input cin;
input clk;
output cout;
output sum;
reg cout;
reg cout_temp;
reg sum;
reg sum_temp;
always @(posedge clk) begin
{cout_temp,sum_temp} = cin_a + cin_b + cin;
end
always @(posedge clk) begin
{cout,sum} = {{1'b0,cin_a} + {1'b0,cin_b} + cout_temp, sum_temp};
end
endmodule
注意:这里在always块内只能用阻塞赋值方式,否则会出现逻辑上的错误!
(3)4级流水线实现方式:
module adder_8bits_4steps(cin_a, cin_b, c_in, clk, c_out, sum_out);
input cin_a;
input cin_b;
input c_in;
input clk;
output c_out;
output sum_out;
reg c_out;
reg c_out_t1, c_out_t2, c_out_t3;
reg sum_out;
reg sum_out_t1;
reg sum_out_t2;
reg sum_out_t3;
always @(posedge clk) begin
{c_out_t1, sum_out_t1} = {1'b0, cin_a} + {1'b0, cin_b} + c_in;
end
always @(posedge clk) begin
{c_out_t2, sum_out_t2} = {{1'b0, cin_a} + {1'b0, cin_b} + c_out_t1, sum_out_t1};
end
always @(posedge clk) begin
{c_out_t3, sum_out_t3} = {{1'b0, cin_a} + {1'b0, cin_b} + c_out_t2, sum_out_t2};
end
always @(posedge clk) begin
{c_out, sum_out} = {{1'b0, cin_a} + {1'b0, cin_b} + c_out_t3, sum_out_t3};
end
endmodule
可是在ISE12.3 下实际时序分析的结果:采用4级流水线比不采用流水线的延时更大:
非流水线方式: Timing constraint: TS_clk = PERIOD TIMEGRP "clk" 10 ns HIGH 50%; 0 paths analyzed, 0 endpoints analyzed, 0 failing endpoints 0 timing errors detected. (0 component switching limit errors) Minimum period is 1.366ns.
4级流水线方式: Timing constraint: TS_clk = PERIOD TIMEGRP "clk" 10 ns HIGH 50%; 10 paths analyzed, 10 endpoints analyzed, 0 failing endpoints 0 timing errors detected. (0 setup errors, 0 hold errors, 0 component switching limit errors) Minimum period is 3.422ns.
采用流水线之后延时更大,意味着系统最高频率更小,工作速度反而降低了,那流水线技术的意义究竟何在?
页:
[1]