zxopenluyutong 发表于 2021-5-8 09:33:26

SHA256算法原理详解

1. SHA256简介
SHA256是SHA-2下细分出的一种算法
SHA-2,名称来自于安全散列算法2(英语:Secure Hash Algorithm 2)的缩写,一种密码散列函数算法标准,由美国国家安全局研发,属于SHA算法之一,是SHA-1的后继者。
SHA-2下又可再分为六个不同的算法标准
包括了:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA-512/256。
这些变体除了生成摘要的长度 、循环运行的次数等一些微小差异外,算法的基本结构是一致的。
回到SHA256上,说白了,它就是一个哈希函数。
哈希函数,又称散列算法,是一种从任何一种数据中创建小的数字“指纹”的方法。散列函数把消息或数据压缩成摘要,使得数据量变小,将数据的格式固定下来。该函数将数据打乱混合,重新创建一个叫做散列值(或哈希值)的指纹。散列值通常用一个短的随机字母和数字组成的字符串来代表。
对于任意长度的消息,SHA256都会产生一个256bit长的哈希值,称作消息摘要。
这个摘要相当于是个长度为32个字节的数组,通常用一个长度为64的十六进制字符串来表示
来看一个例子:
干他100天成为区块链程序员,红军大叔带领着我们,fighting!
这句话,经过哈希函数SHA256后得到的哈希值为:
A7FCFC6B5269BDCCE571798D618EA219A68B96CB87A0E21080C2E758D23E4CE9
这里找到了一个SHA256在线验证工具,可以用来进行SHA256哈希结果的验证,后面也可以用来检验自己的SHA256代码是否正确。用起来很方便,不妨感受下。

2. SHA256原理详解
为了更好的理解SHA256的原理,这里首先将算法中可以单独抽出的模块,包括常量的初始化、信息预处理、使用到的逻辑运算分别进行介绍,甩开这些理解上的障碍后,一起来探索SHA256算法的主体部分,即消息摘要是如何计算的。
2.1 常量初始化
SHA256算法中用到了8个哈希初值以及64个哈希常量
其中,SHA256算法的8个哈希初值如下:
h0 := 0x6a09e667
h1 := 0xbb67ae85
h2 := 0x3c6ef372
h3 := 0xa54ff53a
h4 := 0x510e527f
h5 := 0x9b05688c
h6 := 0x1f83d9ab
h7 := 0x5be0cd19
12345678
这些初值是对自然数中前8个质数(2,3,5,7,11,13,17,19)的平方根的小数部分取前32bit而来
举个例子来说,$ \sqrt{2} $小数部分约为0.414213562373095048,而
   
      
      
      
         0.414213562373095048
      
      
         ≈
      
      
         6
      
      
         ∗
      
      
         1
      
      
         
          6
         
         
         
         −
         
         
         1
         
         
      
      
         +
      
      
         a
      
      
         ∗
      
      
         1
      
      
         
          6
         
         
         
         −
         
         
         2
         
         
      
      
         +
      
      
         0
      
      
         ∗
      
      
         1
      
      
         
          6
         
         
         
         −
         
         
         3
         
         
      
      
         +
      
      
         .
      
      
         .
      
      
         .
      
      
      
         0.414213562373095048 \approx 6*16^{-1} + a*16^{-2} + 0*16^{-3} + ...
      
      
   0.414213562373095048≈6∗16−1+a∗16−2+0∗16−3+... 于是,质数2的平方根的小数部分取前32bit就对应出了0x6a09e667
在SHA256算法中,用到的64个常量如下:
428a2f98 71374491 b5c0fbcf e9b5dba5
3956c25b 59f111f1 923f82a4 ab1c5ed5
d807aa98 12835b01 243185be 550c7dc3
72be5d74 80deb1fe 9bdc06a7 c19bf174
e49b69c1 efbe4786 0fc19dc6 240ca1cc
2de92c6f 4a7484aa 5cb0a9dc 76f988da
983e5152 a831c66d b00327c8 bf597fc7
c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13
650a7354 766a0abb 81c2c92e 92722c85
a2bfe8a1 a81a664b c24b8b70 c76c51a3
d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08 2748774c 34b0bcb5
391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3
748f82ee 78a5636f 84c87814 8cc70208
90befffa a4506ceb bef9a3f7 c67178f2
12345678910111213141516
和8个哈希初值类似,这些常量是对自然数中前64个质数(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97…)的立方根的小数部分取前32bit而来。
2.2 信息预处理(pre-processing)
SHA256算法中的预处理就是在想要Hash的消息后面补充需要的信息,使整个消息满足指定的结构。
信息的预处理分为两个步骤:附加填充比特和附加长度
STEP1:附加填充比特
在报文末尾进行填充,使报文长度在对512取模以后的余数是448
填充是这样进行的:先补第一个比特为1,然后都补0,直到长度满足对512取模后余数是448。
需要注意的是,信息必须进行填充,也就是说,即使长度已经满足对512取模后余数是448,补位也必须要进行,这时要填充512个比特。
因此,填充是至少补一位,最多补512位。
例:以信息“abc”为例显示补位的过程。
a,b,c对应的ASCII码分别是97,98,99
于是原始信息的二进制编码为:01100001 01100010 01100011
补位第一步,首先补一个“1” : 0110000101100010 01100011 1
补位第二步,补423个“0”:01100001 01100010 01100011 10000000 00000000 … 00000000
补位完成后的数据如下(为了简介用16进制表示):
61626380 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000
1234
为什么是448?
因为在第一步的预处理后,第二步会再附加上一个64bit的数据,用来表示原始报文的长度信息。而448+64=512,正好拼成了一个完整的结构。
STEP2:附加长度值
附加长度值就是将原始数据(第一步填充前的消息)的长度信息补到已经进行了填充操作的消息后面。
wiki百科中给出的原文是:append length of message (before pre-processing), in bits, as 64-bit big-endian integer
SHA256用一个64位的数据来表示原始消息的长度。
因此,通过SHA256计算的消息长度必须要小于$ 2^64 $,当然绝大多数情况这足够大了。
长度信息的编码方式为64-bit big-endian integer
关于Big endian的含义,文末给出了补充
回到刚刚的例子,消息“abc”,3个字符,占用24个bit
因此,在进行了补长度的操作以后,整个消息就变成下面这样了(16进制格式)
————————————————
版权声明:本文为CSDN博主「随煜而安」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u011583927/article/details/80905740

zxopenhl 发表于 2021-5-9 16:52:10

SHA256算法原理详解

zxopenljx 发表于 2022-9-6 17:45:23

SHA256算法原理详解

dameihuaxia 发表于 2022-9-27 14:34:30

ZX_2开发板资料
http://www.fpgaw.com/forum.php?mod=viewthread&tid=139992&fromuid=58166
(出处: fpga论坛|fpga设计论坛)

dameihuaxia 发表于 2022-9-28 14:44:08

m序列的产生与本原多项式
http://www.fpgaw.com/forum.php?mod=viewthread&tid=134086&fromuid=58166
(出处: fpga论坛|fpga设计论坛)

大鹏 发表于 2022-10-7 15:14:48

SHA256算法原理详解
页: [1]
查看完整版本: SHA256算法原理详解